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Abstract--Radiation and thermophoresis interaction in thermally developing laminar Ilow in a constant- 
wall-temperature parallel-plate channel is investigated. The fluid is a radiatively nonparticipating gas 
containing emitting, absorbing, and isotropically scattering gray aerosol particles. The channel walls are 
opaque, gray and diffuse. Formal relations developed for the radiation part are used together with the 
discretized forms of the energy and particle conservation equations to solve the problem numerically 
through an iterative scheme. Various results are presented to illustrate the effects of the parameters of the 
problem on the temperature and particle concentration distributions, as well as on particle deposition on 
the channel walk when they are cold and on the development of the particle-free zone along the walls when 

they are hot. 

INTRODUCTION 

ULTRAFIN~ aerosols (i.e. submicrometer sized par- 
ticles) suspended in a nonisothermal gas acquire a 
mean velocity relative to the gas and move in a direc- 
tion opposite to the temperature gradient. This non- 
continuum effect, known as thermophoresis, occurs 
whenever the size of the particles is comparable to the 
mean-free-path of the background gas and is caused 
by the differential momentum transfer to the particles 
following collisions with molecules that originate in 
regions of the gas that differ in temperature. Thermo- 
phoresis is particularly interesting when the particles 
are at sufficiently high temperatures to participate in 
radiative transfer and, therefore, are partially respon- 
sible for the temperature gradients in the gas. This 
case not only has intrinsic interest from a theoretical 
viewpoint, but is also important in a variety of engin- 
eering fields including material processing techniques 
that involve particle deposition from high temperature 
gas streams (e.g. the Modified Chemical Vapor Depo- 
sition, MCVD, process [l]), formation and motion of 
soot in flames and, more importantly, deposition of 
soot on cooled gas turbine blades [2], fouling of heat 
exchanger surfaces, etc. There has been very little 
research to date on the general problem of radiation 
coupled with aerosol motion through thermophoresis. 
However, it has already been demonstrated that 
thermophoresis can have a significant effect on the 
spatial distribution of aerosol particles and the tem- 
perature in the medium [3-61. 

Simpkins et al. [ 11, Walker et al. 171, Weinberg and 
Subramanian [8] and Weinberg [9] are among the 

t Present address : Senior Engineer, Thermoflow Inc., 888 
Worcester Street, Wellesley, MA 0218 I, U.S.A. 

first investigators who modeled particle deposition by 
the~ophoresis in laminar tube flow in the context 
of optical fiber preform fabrication by the MCVD 
process. Recently, the effect of laser radiation on the 
aerosol deposition has been studied by Morse et al. 

[lo], Ravikumar [ll], and Cipolla and Morse [3] and 
shown to be an effective mechanism to enhance aero- 
sol deposition efficiency in the MCVD process. In 
these studies it has also been demonstrated that in the 
presence of laser radiation the aerosol can reach rather 
high temperatures, so that emission of thermal radi- 
ation from the aerosol should be considered in the 
calculation of the temperature field. More recently, 
Paz [12] and Paz ef al. 1131 have studied the effects 
of spontaneous emission from the aerosol particles 
generated in the MCVD process on the temperature 
and concentration fields, as well as on the deposition 
efficiency in the two limits where the aerosol can be 
modeled both as an optically thin medium (when the 
inlet concentration is below 10 I2 cm- “) and an opt- 
ically thick medium (for higher inlet concentrations). 
They have demonstrated that the inclusion of spon- 
taneous emission from the aerosol particles reduces, 
in general, the temperature gradients in the flow field, 
thereby lowering the thermophoretic effect respon- 
sible for the aerosol deposition on the inner wall of 
the tube. As a consequence, they have concluded that 
the aerosol deposition efficiency is lower than what 
would be predicted if spontaneous emission were 
neglected. 

The objective of the present work is to investigate 
the interaction between radiation and thermophoresis 
in thermally developing laminar flow in a parallel- 
plate channel. The aerosol particles are assumed to be 
absorbing, emitting, isotropically scattering and gray, 
with their absorption and scattering coefficients being 
proportional to the local concentration of particles. It 
is also assumed that the aerosol is dilute, mono- 
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NOMENCLATURE 

c aerosol particle concentration Greek symbols 

(‘P specific heat of background gas C emissivity 
D Brownian diffusion coefficient ? dimensionless transverse coordinate, 
I), equivalent diameter, 4L .Y/L 
E particle deposition eficicncy. equation 0 dimensionless temperature, T/T, 

(1% @II dimensionless bulk temperature, 
E,, exponential integral function equation (15) 
G dimensionless incident radiation K absorption coefficient 
J, local flux of particles to cold channel walls p direction cosine 
JW dimensionless local particle wall flux, V kinematic viscosity of background 

J,/4C,iJi,/Pr gas 
K thermophoretic coefficient ; dimensionless axial coordinate, 
k thermal conductivity of background gas (32/3)(x/D,)/(Re Pr) 
L half the distance between channel walls P density of background gas 
N tR conduction-to-radiation parameter, rJ scattering coefficient 

equation (4) 5 Stefan--Boltzmann constant 
NU local Nusselt number 7 local optical variable 
n refractive index of gas-aerosol mixture 70 local optical thickness 
Pe Peclel number, Re Pr 6 optical thickness at .x = 0, ~~(0) 
PU Prandtl number, pvc,/k 4 dimensionless concentration, C/C, 

Qr dimensionless radiative heat flux, y/ dimensionless radiation intensity 
ijr/&12dT: w scattering albedo. 

Q’ dimensionless total heat flux 

4’ radiative heat flux in y-direction Superscripts 
Re Reynolds number, U,D,/v + forward flux 
SC Schmidt number, v/D backward flux. 
T temperature 

u, mean Row velocity Subscripts 
U fully-developed velocity profile. i quantities evaluated at channel entrance 

$,,,(I -_rll) nr no-radiation quantity 
.Y axial coordinate W quantities evaluated at channel walls 

I’ transverse coordinate. 0 quantities evaluated at s = 0. 

disperse, nonreactive and in thermal equilibrium with 
the radiatively nonparticipating carrier gas. In the 
following sections we first present the formulation of 
the problem with the assumption of constant thermo- 
physical and transport properties. Next, we develop a 
formal solution to the radiation part of the problem, 
and use it together with the discretized forms of the 
energy and particle conservation equations to solve 
the problem numerically through an iterative scheme. 
Finally, we present results illustrating the effects of 
various parameters of the problem on the temperature 
and particle concentration distributions, as well as on 
the particle deposition efficiency along the channel 
when the channel walls are cold and on the develop- 
ment of the particle-free zone along walls when they 
are hot. 

FORMULATION 

Consider the thermally developing steady laminar 
flow of a gas containing suspended aerosol particles 
between two infinite parallel plates separated by a 

distance 2L,. The aerosol particles are assumed to be 
absorbing, emitting, isotropically scattering and gray. 
The. bounding surfaces, located at y = f L, are con- 
sidered to be impermeable, opaque, gray, diffuse 
reflectors and diffuse emitters, with the same uniform 
emissivity over each surface. The gas enters the cooled 
(or heated) section of the channel at the origin of 
the axial coordinate x with a fully-developed velocity 
profile u(y), uniform temperature T, and aerosol par- 
ticle concentration C,, while the channel walls are 
maintained isothermal at T, for x > 0. It is also 
assumed that the aerosol is monodisperse, dilute, non- 
reactive and in thermal equilibrium with the radi- 
atively nonparticipating background gas. Moreover, 
the aerosol particles are small enough for inertial 
effects to be ignored. Aerosol particles may be 
assumed to be in thermal equilibrium with the back- 
ground gas if the thermal response time of the particles 
is small compared to the characteristic time of the 
changing flow conditions. For 1 .O pm diameter SKI2 
particles, for example, the thermal response time is 
about 2.5 ps, so thermal equilibrium of such particles 
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within a fully-developed laminar flow channel seems 
reasonable. Also, ultrafine aerosol particles rapidly 
achieve hydrodynamic equilibrium. For example, a 
10 pm diameter aerosol particle of unit density placed 
at rest in a gas flow of IO ms- ’ will reach hydro- 
dynamic equilibrium with the flow after travelling 
3.6 x 10m5 m [14]. 

Assuming constant thermophysical and transport 
properties for the aerosol-gas mixture, and neglecting 
viscous dissipation as well as axial heat conduction, 
radiation, Brownian diffusion and thermophoretic 
motion of the aerosol particles, the energy and the 
particle conservation equations may be written in 
dimensionless form as 

with the inlet and boundary conditions 

@(O, ?> = @i, #CO, r) = 1 Oa,b) 

x%5,0) 
-- = 

o 

dq ’ 
wet> 0) = o 

drl 
(kdf 

Ott, 1) = 1, d(5.1) = 0. (3e.f) 

Inequation (I), $Y = @,+a,)& and the conduction- 
to-radiation parameter NCR is given by 

where K,, and crO are, respectively, the absorption and 
scattering coefficients of the mixture at the entrance 
of the channel. Also, n denotes the refractive index of 
the mixture, which is assumed to be constant, and (5 
is the Stefan-Boltzmann constant. Furthermore, in 
equation (2), SC = v/D represents the Schmidt 
number, where D denotes the Brownian diffusion 
coefficient and K is the thermophoretic coefficient. 
Both D and K are considered to be independent of 
temperature in this work. In equation (1), the dimen- 
sionless radiative heat flux Q’ is defined as 

with 

Q’(Lrl) = Q+(9>d--Q-(t>v) (5) 

Q’(t,r, =; o’ ‘V&q, filofidp 
i 

(6) 

where Y(& 1, ,u) represents the dimensionless radi- 
ation intensity and p is the direction cosine (as mea- 
sured from the positive y-axis) of the propagating 
radiation in the gas-aerosol mixture. On the other 
hand, if the absorption and the scattering coefficients 
are both considered to be proportional to the aerosol 
concentration ~#$t;, g) according to 

then, with the assumption that the mixture is locally 
plane-parallel, the dimensionless radiation intensity 
satisfies the radiative transfer equation given in the 
form 

where 

0 < t(5, ?) < Z”(S), - 1 < p < 1. 

In equation (8), axial variations of Y have been 
neglected compared to variations normal to the flow 
and CIJ = (T~/(K~+ oO) represents the scattering albedo. 
Furthermore, the quantity t denotes the local optical 
variable defined as 

~(5, rl) = 7: 
s 

oq 4(;, $1 dv’ (9) 

and r*(l) = z(& 1) represents the local optical thick- 
ness at the dimensionless axial location 5, with 
zt 5 s,(O) being the optical thickness at 5 = 0. 

Assuming that both plates have the same radiative 
properties, the boundary conditions for equation (8) 
are given by 

Y(L 0, ti) = W<, 0, -P.1), !J > 0 (10a) 

UC<, 710, -jL) = E, +2fl --E,) 

s 

1 

X ‘V5,7o, P’)P’ W, P > 0. (10b) 
0 

It can be shown that the derivative of the radiative 
heat flux in the energy equation (I) is given by 

g = (1-w)7~~i5,7)[04(5,z)-C(5,7)l (11) 

where 

represents the dimensionless incident radiation. 
It is obvious from equation (2) that the temperature 

distribution O(<, v) has to be known in order to obtain 
the aerosol concentration distribution r$(&q) in the 
flow field. On the other hand, the energy equation (1) 
contains a source term which depends on the deriva- 
tive of the radiative heat flux. The radiative heat flux, 
which is to be determined from the solution of the 
radiative transfer equation (8) with the boundary con- 
ditions (lo), in turn, depends on the aerosol con- 
centration dist~bution as indicated by equations (9) 
and (11). Thus, the energy, particle concentration and 
radiative transfer equations are nonlinearly coupled 
to each other, and an iterative scheme is needed to 
solve them simultaneously. 
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Local Nusselt nurnher 

Once the temperature distribution in the flow is 
determined, the local Nusselt number is obtained from 
its definition as 

where the dimensionless total wall 
obtained from 

heat flux Qi, is 

and 0, represents the dimensionless bulk temperature 

defined as 

In equation (l4), the first term on the right-hand side 
is the dimensionless heat flux due to conduction and 
the second term is the dimensionless radiation heat 

flux. both at the channel walls. 

Particle deposition at the channel walls 

Generally speaking, if O(t, II) is known, then equa- 

tion (2) can readily be solved to obtain the particle 
concentration distribution c$(<, q). On the other hand, 
for aerosol particles of interest (in air at normal tem- 

perature and pressure) the Schmidt number is very 
large, of the order of magnitude of 10’ to 105. For 
example, for a spherical particle of 1 /Lrn diameter in 
air, the Schmidt number is of order 10’. Accordingly, 
in equation (2). the Brownian diffusion may be 
neglected compared to convection and thermo- 

phoretic motion of the particles, and therefore the 
particle conservation equation reduces to 

with the inlet and boundary conditions 

$(O,q) = I and (3rl -~ = 0. (l&b) 

In this limit the contribution of Brownian diffusion 
is much smaller than that of thermophoresis except 
within the extremely thin Brownian diffusion sublayer 

on the channel walls, where the temperature gradients 
are very small and thermophoresis virtually plays no 
role at all. In the absence of Brownian diffusion, equa- 
tion (I 6) is of first order in I?, thus requiring only one 
boundary condition in the q-direction as stated by 
equation (17b), and the boundary condition (3f) is no 
longer imposed. The solution of equation (16) then 
yields a non-zero particle concentration at the bound- 
aries when the plates are colder than the incoming 
flow. Strictly speaking, the nonzero concentration is 
the one at the outer edge of the very thin Brownian 
sublayer where the gas velocity is so small that par- 
ticles entering this layer by thermophoresis deposit on 

the walls at the same axial location due to London 
van der Waals forces. Thus. the local flux of particles 
J,\ to the (cold) channel walls will be given by the 
thermophorctic flux to the thin sublayer and can bc 
calculated, in dimensionless form. from 

(18) 

The particle deposition efficiency E(5) is defined as 

the fraction of aerosol particles entering the channel 
at j’ = 0 that have deposited on the walls from 5 = 0 
to <. Since the total number of particles entering the 
channel at < = 0 must be equal to the number of 
particles deposited on the walls plus the total number 
of particles crossing the channel with flow at :. one 
can show that 

In this section we have presented a formulation of 

the problem. In the following section, we give a 
method for the determination of the radiative heat 
flux Qr and its derivative ?Q’/& in terms of the tem- 
perature distribution in the flow. 

FORMAL SOLUTION TO THE RADIATION 
PART 

The solution of the problem defined by the radiative 

transfer equation (8) and the boundary conditions 

(IOa,b) can be written as 

Y(L~>P) = ~,(i;,T.I-L)+J(w +Yz(z,pL)l (20) 

where 

J(c’) = 6, +4(l -s,)Q+(;;>7,,) (21) 

and Y’, are the solutions of the following two auxiliary 
problems : 

H 
ppm ’ +Y,({, Z, I() = S,(<. 4), 

Sr 
i = I. 2 (22) 

Y,(<,O, P) = Y,(C 0, -P), /I > 0 (23a) 

Y,(C Tl,r -/f) = 0, /L > 0. (23b) 

In equation (22), the source functions S, are given by 

S,(<,z) = (1 -(~)[6,,04(5,t)+6,2]+wC,(5.T) 

(24) 

where 6,, denotes the Kronecker delta and G,(t, 5) are 
defined in terms of Y, according to equation (I 2). 

Substituting the superposition (20) into equations 

(5) and (6) gives 

with 

Qr(&r, = Q;(L~)+J(ir)Qib) (25) 

Q:(LTS, = Q:(t> ~1 -Q,F(;, 5) (26) 
where Q,’ are defined in terms of Y’, according to 
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equation (6). Also, substituting equation (20) into 

equation (21) gives 

J 
W 

(() = L+4(1-hv)Q:(5,~0) 

&iv--4(1 --G)Q:(~~) ’ 
(27) 

It can be shown by first solving the problem defined 
by equations (22) and (23) for Yi in terms of S, and 
then substituting ‘I’, into equation (6) that 

Q:(k7) =; S,(<,z’)E,(r-7’) dr’ 

s 7” 

+ S,(5,7’)E,(7+7’) dr’ (28a) 
0 

and 

‘” s,(5,7’)&(7’-7) dr’ 

Substituting the superposition (21) into equation 
(12) also gives 

G(L7) = G,(5,7)+.W{l+G2(7)} (29) 

and it can be shown that 

G,(t,7) =; ,” [E,(7+7’) 
s 

+E,(l7_7’l)]Si(S,~‘) dr’. (30) 

In equations (28) and (30), E,(x) represents the 
exponential integral function. 

By combining equations (24) and (30), it can further 
be shown that the source functions S, satisfy the fol- 
lowing singular Fredholm integral equation : 

U5,7) = F,(h 7) + ; 
s 

” K(7, z’)S,(& 7’) dz’ (31) 
0 

where 

F,(5,7) = (I-w)[6,,04(5,7)-6,21 (32) 

and the kernel K(7, T’) is given by 

K(7,7’) = E,(z+z’)+E,(I7-7’1). (33) 

Following the work of ijzrsrk and Yener [15], we 
now expand Si into a power series as 

S(h7) = 2 C,,(5)7” (34) 
n=O 

and then substitute it into the integral equation (3 1). 

Next, we multiply the resulting equation by rm and 
then integrate it over 7 from 0 to z. to obtain the 
following system of N-t 1 algebraic equations for the 
expansion coefficients C,, : 

m = 0, 1,. . , N (35) 
,1= 0 

where 

and 

(36) 

m+n+ f 
OJ To 

B,, = t0 _ _ 
70 ss m+n+l 2 0 ” 

7’“7”K(7,7’) dr’ dr. 

(37) 

Once the expansion coefficients C,,(t) are obtained 
from the solution of equation (35), the forward and 

backward radiative fluxes and the incident radiation 
functions can readily be determined by substituting 

the expansion (34) for S, into equations (28a,b) and 

(30) as 

Q,+(~,T) =; ; C,,(t) r7’“E,(7-7’) dr’ 
n = 0 is 0 

+ 
s 

70 
E,(7+7’)7’” dr’ 

1 
(38a) 

0 

Q;({,T) = ; c C,,,(t) ‘” E,(T’-7)~‘” dr’ 
n-0 s 0 

(38b) 

and 

Gi(5,r) =; i C;,(5) ‘“IE,(7+7’) 
n-0 I 0 

+E,(lz-7’1)]7’” dr’. (39) 

Equations (37), (38a,b) and (39) involve integrals 
of the exponential integral functions. In this work we 
have evaluated these integrals analytically and the 
results can be found in ref. [ 161. 

SOLUTION 

Having established the formulation of the problem, 
the solution of the interaction problem is now reduced 
to that of iterative calculations between the formal 
relations for Qr and aQ’/Sr and a numerical solution 
of the energy and particle conservation equations. 

Cold wail case 

When the channel walls are colder than the 
incoming aerosol-gas mixture, particles will deposit 
on the walls due to thermophoresis as the flow pro- 
ceeds in the channel. However, as the gas flows down- 
stream its temperature will gradually approach the 

wall temperature and the thermophoretic deposition 
will eventually cease ; therefore, not all the particles 
initially present in the flow will be captured. As dis- 
cussed earlier, the Brownian diffusion term in the 
particle concentration equation (2) does not play a 
role in the calculation of the concentration field, 
except in the extremely thin diffusion layer adjacent 
to the channel walls. Without the diffusion term, the 



solution of the particle concentration equation yields 
nonzero concentration at the walls. For the cold wall 
case, this nonzcro wall concentration is used together 
with the thermophoretic velocity of the particles to 
calculate the particle flux to the walls. The numerical 

procedure employed in this case can be outlined as 
follows. The energy equation (I) is first solved at the 
axial location t, numerically by the CrankkNicolson 
scheme in the absence of radiation to obtain the no- 

radiation temperature profile O,,(<, , a). This profile 
is then used in the numerical solution (again by the 
Crank-Nicolson scheme) of the particle conservation 

equation (2) to obtain the no-radiation concentration 
profile +,,(t,. q). Next, the temperature profile 
O,,(c , , q) is transformed to the form O,,(< , , z) by the 
use of relation (9). The temperature profile O,, (i , , z) 
is now used as a first guess in the solution of the 
radiative transfer equation (8), and the relations 
developed in the previous section are employed to 
determine Qr(<, , T), which is, in turn, transformed to 

the form Q’(<,,q), again by the use of relation (9), 
and is used in the numerical solution of the energy 
equation (I) to obtain a new temperature profile 

O([ , , q). This new temperature profile is subsequently 
used as the next guess to first obtain a new 4(<, . ‘1) 
and then O(<, , q) by repeating the above described 
scheme. This procedure is repeated until the differ- 

ences between the last two calculated profiles for 
O(< , , q) and 4(5,, q) satisfy prescribed accuracies. 
Once the desired accuracies are reached. the dimen- 
sionless heat and particle fluxes to the boundaries are 
calculated at 4,) respectively, from equations (14) and 

(18). When the calculations are completed at t ,, the 
above procedure is repeated at the following axial 
locations <,, i = 2,3.. , where at each location t,+ , 
the temperature profile at the previous location 4, is 
taken as the first guess. For the results presented here, 
the subdivisions in the transverse q-direction were 

nonuniformly spaced, with higher concentration of 
grid points near the walls; the smallest grid size next 

2.0 - 

to the boundaries was Aq = 0.005 and the total num- 
ber of grid points was 200. However. various numeri- 
cal cxperimcnts wcrc carried out with grid points in 
the range 100~500 over ~E(O, I) to verify that the 
solutions wcrc grid independent. In the strcamwise 
direction, the first step size in the c-direction was 
taken to be as small as 0.0003, for cases in which the 
radiation was strong, with the step sizes increasing 
further from the inlet. Convergence was assumed to 

have been reached when the maximum relative differ- 
ence in sequential itcrates was less than IO ’ over all 

grid points for both the temperature and con- 
centration fields. 

When the channel walls are hot, the particles are 

pushed away from the walls, giving rise to a particle- 
free region along the walls. Actually, the trajectory of 
the particles departing from the channel walls at 
< = 0 determines the boundary of the particle-free 
region. It would be relatively easy to determine this 
trajectory for the high-Schmidt-number flow if the 

energy and particle conservation equations were not 
coupled, because, in that case, the axial velocity of the 
particles would be the same as the axial velocity of 
the carrier gas and the transverse component would 
readily be calculated from the already-obtained tem- 
perature profiles. However, in the present case, the 

energy, radiative transfer and particle conservation 
equations are highly nonlinearly coupled, making the 
determination of the boundary of the particle-free 
zone a difficult task. The iterative numerical solution 

procedure employed in this case is essentially the same 
as in the previous case. We have, however, incor- 

porated a mass conservation scheme [12] into the 
numerical solution of the particle conservation equa- 
tion (I 6) by controlling two criteria : the first one is 
that the total number of aerosol particles crossing the 
channel at each axial location is the same since there 
is no particle deposition, and the second is that the 

0.0 0.2 0.4 0.8 0.8 1.0 

(b) 
rl 

FIG. 1. Effect of the optical thickness TX at < = 0. I on the temperature profile (a) and the concentration 
profile (b). 0, = 2.0, w = 0.5, E, = 1.0, N,, = 0.5 and K Pr = 0.7. 
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FIG. 2. Effect of the optical thickness zz on the particle 
deposition efficiency. 0, = 2.0, o = 0.5, E, = 1.0, NCR = 0.5 

and K Pr = 0.7. 

concentration in the particle-free zone cannot be nega- 
tive. We have also used an approximation in the form 

t([, q) r ttq instead of relation (9) for the trans- 
formations between the physical variable ‘1 and the 

optical variable r at each 5,. This approximation was 
prompted by the numerical difficulties arising from 
the fact that over the thickness of the particle-free 
region the particle concentration is zero and, there- 
fore, the optical variable does not vary, whereas there 
are significant variations in temperature in the same 
region. 

RESULTS AND DISCUSSION 

A selection of numerical results that demonstrate 
the effects of the principal parameters of the problem 

is presented in this section. Figure 1 illustrates the 
effect of the optical thickness t: on the temperature 

and aerosol concentration profiles at 5 = 0.1 along the 
channel for 0, = 2.0 (cold boundaries) with w = 0.5, 

E, = 1.0, NCR = 0.5 and K Pr = 0.7. With large values 

of rz, radiation has a stronger effect on the heat trans- 
fer and, therefore, the temperature of the aerosol-gas 
mixture decays faster along the channel, resulting in 

less particle deposition on the channel walls. As seen 
from these figures, the effect is less significant for the 
optically thin case of T: = 0.1. Figure 2, on the other 

hand, shows the effect of T: on the particle deposition 
efficiency as a function of 5 along the channel. As seen 
from this figure, the efficiency at any axial location 
decreases significantly as radiation becomes more 
dominant with increasing values of T:. Especially in 
the optically thick case of rt = 5, in which radiation 

significantly dominates the heat transfer process, the 
temperature of the mixture rapidly declines to the wall 
temperature and the particle deposition on the plates 

ceases after a very short distance from the entrance. 
Also, in each case, the efficiency rapidly approaches 
an asymptotic limit. This limit is referred to as the total 
or overall efficiency and the length of the deposition 
region is determined by the distance it takes for the 
deposition efficiency to reach its asymptotic value. 
Figure 3(a) illustrates the effect of z$ on the dimen- 
sionless total Q; and radiative Q; heat fluxes at the 
channel walls, and Fig. 3(b) demonstrates the effect 

of rf on the local Nusselt number Nu(<). As seen 
from Fig. 3(b), in the optically thin case (i.e. when 

tf = 0. l), except in regions where r CC 1, the total heat 
flux slightly deviates from the no-radiation heat flux 

QZ,m indicating that the decrease in the conduction 

heat flux because of the decreased temperature gradi- 
ents is merely compensated by the radiative heat flux. 

For the case of large zf (i.e. when 28 = 1 .O), radiation 
greatly enhances the total heat flux in regions close to 

the inlet (i.e. when 5 < 0.2), whereas the total flux is 
reduced at larger values of the axial locations in spite 

of the presence of radiation because of the sig- 
nificantly reduced conduction. Figure 3(b) depicts 
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(b) 
FIG. 3. Effect of the optical thickness rt on the total and radiative heat fluxes (a) and the local Nusselt 

number (b). 0, = 2.0, o = 0.5, E, = 1.0, Ncn = 0.5 and K Pr = 0.7. 



FIG. 4. The particle deposition efficiency : the effects of the inlet temperature (a). the scattering alhedo (b), 
the conduction-to-radiation parameter (c) and the emissivity (d). TX = I .O and K Pr = 0.7. 

that the effect of r$ on the local Nusselt number is 
significantly pronounced for larger values of zl as 
radiation becomes more dominant with increasing 
values of z$. When radiation is strong (i.e. large tz), 
the local Nussett number does not seem to approach 
an asymptotic value. This same behavior was also 
observed previously by various investigators [I 7-201. 

Figure 4(a) illustrates the effect of the inlet tem- 
perature 0, on the particle deposition efficiency. As 
expected, with larger values of 0,. the deposition 
efficiency increases. Figure 4(b), on the other hand, 
shows the effect of the scattering albedo o on the 
deposition efficiency. The case cu = 0 corresponds to 
purely absorbing and emitting aerosols and the effect 
of radiation is maximum. On the other hand, the case 
(r) = 1 corresponds to a purely scattering aerosol-gas 

0.4 I 
0.0 0.2 0.4 0.6 0.8 1.0 

(a) 
1) 

mixture in which the radiation is uncoupled from 
convection and thermophoresis. Thus, as seen in Fig. 
4(b), as w approaches unity, the effects of radiation 
are weakened and the problem reduces to that of the 
nonradiating flow case. Figure 4(c) shows the effect 
of the conduction-to-radiation parameter IV,., on the 
deposition efficiency. It is obvious that radiation 
becomes the primary means of heat transfer as iv,,* 
becomes smaller, and Fig. 4(c) clearly illustrates this 
effect on the deposition efficiency. Figure 4(d) dem- 
onstrates the effect of the boundary emissivity c, on 
the deposition efficiency. Again as expected, the black 
boundaries (i.e. a, = I) cause the largest radiation 
effect. The results presented so f.ar all pertain to the 
cold channel wall cases. 

When the walls are at a higher temperature than 

0.0 

(W 
v 

Fro. 5. Temperature and concentration profiles at various axial locations for the hot wall case. 0, = 0.5, 
(13 = 0.5, F, = 1.0, .NCR = 0.5 and fCPr = 0.7. 
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the incoming aerosol-gas mixture, the aerosol par- 
ticles are pushed away from the walls by thermo- 

phoresis, resulting in a particle-free region next to the 

walls. Figure 5(a) depicts the temperature profiles at 
different axial locations for the nonradiating case and 
the case of radiating flow with rt = 1.0. Figure 5(b), 
on the other hand, illustrates the particle con- 
centration profiles at the same axial locations. As 
seen from Fig. 5(b), the aerosol particles are pushed 
gradually toward the center of the channel and the 

thickness of the particle-free zone increases with 5. 
Also, the thickness of the particle-free zone at any 
axial location for the nonradiating flow case is thicker 

than that of the radiating case. This is a result of the 
fact that the temperature profiles, as depicted in Fig. 

5(a), are flattened in the presence of radiation, leading 
to reduced thermophoretic velocities away from the 
channel walls. 
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